C.U.SHAH UNIVERSITY Summer Examination-2016

Subject Name: Thermodynamics

	Subject	Code: 4	TE04TDY1	Branch: B.Tec	h (Auto)			
	Semeste Instructi		Date: 20/5/2016	Time: 2:30 To	5:30	Marks: 70		
				or & any other elect	ronic instru	ment is prohibited		
	(1) Use of Programmable calculator & any other electronic instrument is prohibited.(2) Instructions written on main answer book are strictly to be obeyed.				-			
					•	yea.		
	(3) Draw neat diagrams and figures (if necessary) at right places.(4) Assume suitable data if needed.							
Q-1		Attem	pt the following ques	tions:			(14)	
	a)	Which	of the following is an	intensive property of	of a thermod	lynamic system?		
		(a) Vo	olume	(b) Te	emperature			
		(c) M	ass	(d) Ei	nergy			
	b)	Absolu	ite zero temperature is	taken as				
		(a) –	273°C	(b) 2	73°C			
		(c) 2	237°C	(d) –	373°C.			
	c)	The lat	ent heat of vaporization	on at critical point is				
		(a) les	ss than zero	(b) gr	eater than z	ero		
		(c) eq	ual to zero	(d) no	one of the al	oove.		
	d)	The ga	s constant (R) is equa	l to the				
		(a) su	m of two specific heat	ts (b) di	fference of	two specific heats		
		(c) pr	oduct of two specific	heats (d) ra	tio of two s	pecific heats.		
	e)	e) The processes or systems that do not involve heat are called						
		-	othermal processes		eady proces	ses		
		(c) ad	iabatic processes.	(d) ec	juilibrium p	rocesses		
	f)	The ma	ain cause for the irrev	ersibility is				
			echanical and fluid fri	-	(b) unrestr	icted expansion		
		(c) he	at transfer with a finit	e temp. difference	(d) all of the	-		
	g)		-Planck's law deals w	-				
	0,	(a) co	onservation of energy	(b) c	onservation	of heat		
		• •	onversion of heat into			f work into heat.		
	h)		lue of the universal ga					
	,		.314 J/kg K		3.14 kJ/kg K			
			-8 kJ/kg K	• •	314 kJ/kg K			
	i)							
	_/	(a) so			iseous			
		~ /	lid and gaseous	(<i>)</i> U	l of above			
		~ /	C					

Page 1 || 3

	j)	Stoichiometric	air-fuel ra	tio by mas	s for combus	stion of petrol is
--	------------	----------------	-------------	------------	--------------	--------------------

J)	Storemometric an-rule ratio by mass for combustion of perior is					
	(a) 5	(b) 10				
	(c) 12	(d) 15.05				
k)	In diesel cycle, heat is added at					
	(a) Constant temperature	b) Constant volume				
	(c) Constant pressure	(d) Constant enthalpy				
l)	Brayton cycle is also called					
	(a) Joule cycle	(b) constant pressure cycle				
	(c) all of above	(d) none of above				
m)) "Equal volumes of all perfect gases at the same pressure and temperature contain					
	the same number of molecules". It is the s	tatement of				
	(a) Boyle's law	(b) Avogadro's law				
	(c) Charle's law	(d) Combined gas law				
n)	One kg mol of a gas occupies a volume of	at normal temperature and pressure				
	(a) 22.4 m^3	(b) 21.8 m^3				
	(c) 20.4 m^3	(d) 23.8 m^3				

Attempt any four questions from Q-2 to Q-8

Q-2 **Attempt all questions**

- Distinguish between Microscopic and Macroscopic point of view. **(a)** (04)
- Explain Thermodynamic equilibrium. **(b)**
- Explain with simple sketch open, closed and isolated system. (c) (05)

Q-3 Attempt all questions

- Derive general steady flow energy equation (SFEE). **(a)**
- (07) A vessel of 6 m³ capacity contains two gases A and B in proportion of 45 per cent **(b)** (07) and 55 per cent respectively at 30°C. If the value of R for the gases is 0.288 kJ/kg K and 0.295 kJ/kg K and if the total weight of the mixture is 2 kg, calculate : (i) The partial pressure ;(ii) The total pressure ; (iii) The mean value of R for the mixture

Attempt all questions 0-4

- Explain reversible and irreversible process with suitable example. **(a)** (04)
- Prove that entropy is a property of a system. **(b)**
- 300 kJ/s of heat is supplied at a constant fixed temperature of 290°C to a heat (05) (c) engine. The heat rejection takes place at 8.5°C. The following results were obtained:

(i) 215 kJ/s are rejected.

(ii) 150 kJ/s are rejected.

(iii) 75 kJ/s are rejected.

Classify which of the result report a reversible cycle or irreversible cycle or impossible results.

Page 2 || 3

(05)

(05)

Q-5		Attempt all questions				
	(a)					
	(b)	State and prove the clausius theorem.	(04)			
	(c)	State the four processes of the diesel cycle.	(04)			
Q-6		Attempt all questions				
	(a)	Explain Rankine cycle with P-V ans T-S Diagram.	(07)			
	(b)	A Carnot engine working between 400°C and 40°C produces 130 kJ of work.	(07)			
		Determine :				
		(i) The engine thermal efficiency.				
		(ii) The heat added.				
		(iii) The entropy changes during heat rejection process.				
Q-7		Attempt all questions				
-	(a)	Explain pure substance.	(04)			
	(b)	Write a short note on Vander Waal's equation.	(05)			
	(c)	Explain triple point with diagram	(05)			
Q-8		Attempt all questions				
-	(a)	State and explain Dalton's law of Partial pressures.	(04)			
	(b)	Write a short note on "Adiabatic flame temperature".	(04)			
	(c)	Explain adiabatic mixing of perfect gas.	(06)			

Page 3 || 3

